
NPN Silicon Epitaxial Planar Transistors

Features

- These transistors are subdivided into three groups
- -16, -25 and -40, according to their current gain. As complementary types the NPN transistors ABC817 and ABC818 are recommended.
- Halogen and Antimony Free(HAF), RoHS compliant
- AEC-Q101 Qualified
- For switching, AF driver and amplifier applications

1.Base 2. Emitter 3. Collector

Mechanical Data

- SOT-23 Plastic Package
- Mounting position: Any

Absolute Maximum Ratings (T _A =25°C unless otherwise noted)					
Parameter	Symbol	Value	Unit		
Collector Base Voltage ABC8	VcBo	50 30	V		
Collector Emitter Voltage ABC8	VCEO	45 25	V		
Emitter Base Voltage	V _{EBO}	5	V		
Collector Current	lc	500	mA		
Power Dissipation ¹⁾	P _D	300	mW		
Operating Junction Temperature Range	TJ	150	°C		
Storage Temperature Range	T _{stg}	- 55 to + 150	°C		

Thermal Characteristics				
Parameter	Symbol	Value	Unit	
Thermal Resistance Junction to Ambient ¹⁾	R _{thJA}	417	°C/W	

 $^{^{1)}}$ Device mounted on FR-4 substrate PC board, 2oz copper, with minimum recommended pad layout.

ABC817 thru ABC818 GOOD-ARK Electronics

Electrical Characteristics (T _A =25°C unless otherwise noted)						
Parameter		Symbol	Min.	Тур.	Max.	Unit
DC Current Gain at V _{CE} = 1 V, I _C = 100 mA	-16 -25	hfe hfe	100 160	-	250 400	-
at $V_{CE} = 1 \text{ V}$, $I_C = 500 \text{ mA}$	-40	h _{FE} h _{FE}	250 40	-	600	-
Collector Base Cutoff Current at V _{CB} = 20 V		Ісво	-	-	100	nA
Emitter Base Cutoff Current at V _{EB} = 5 V		I _{EBO}	-	-	100	nA
Collector Base Breakdown Voltage at I _C = 10 μA	ABC817 ABC818	V _(BR) CBO	50 30	-	-	V
Collector Emitter Breakdown Voltage at I _C = 10 mA	ABC817 ABC818	V _{(BR)CEO}	45 25	-	-	V
Emitter Base Breakdown Voltage at $I_E = 10 \mu A$		V _{(BR)EBO}	5	-	-	V
Collector Emitter Saturation Voltage at I _C = 500 mA, I _B = 50 mA		V _{CE(sat)}	ı	-	0.7	V
Base Emitter On Voltage at I _C = 500 mA, V _{CE} = 1 V		V _{BE(on)}	ı	-	1.2	V
Transition Frequency at $V_{CE} = 5 \text{ V}$, $I_C = 10 \text{ mA}$, $f = 100 \text{ MHz}$		f⊤	100	-	-	MHz
Collector Output Capacitance at V _{CB} = 10 V, f = 1 MHz		Cob	-	5	-	pF

ABC817 thru ABC818 GOOD-ARK Electronics

Typical Characteristics Curves

Fig. 1 Output Characteristics Curve 0.35 0.3 Ic, Collector Current(A) 0.25 0.2 0.15 0.1 0.05 0.5 1.5 2.5

V_{CE}=1V lc, Collector Current(A) Tj=75℃ Tj=25℃ Tj=150℃ Tj=-25℃ 0.001 0.2 1.2 0.4 0.6

Fig. 2 Collector Current vs. Base to Emitter Voltage

Fig. 3 DC Current Gain vs. Collector Current

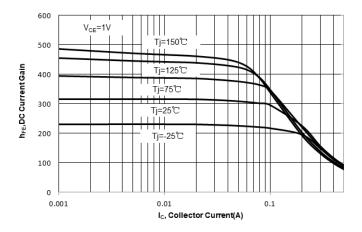


Fig. 4 V_{BE(sat)} vs. Collector Current

 V_{BE} , Base to Emitter Voltage(V)

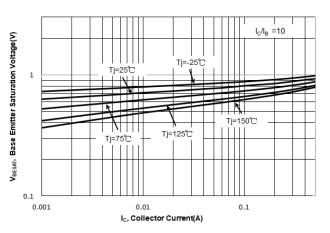


Fig. 5 $V_{\text{CE(sat)}}$ vs. Collector Current

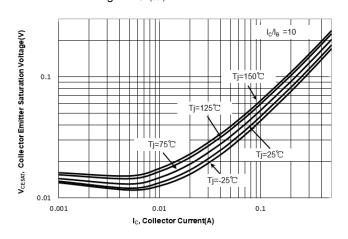
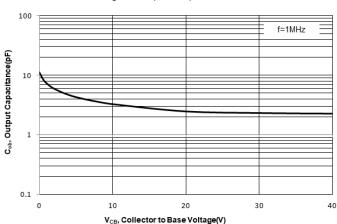
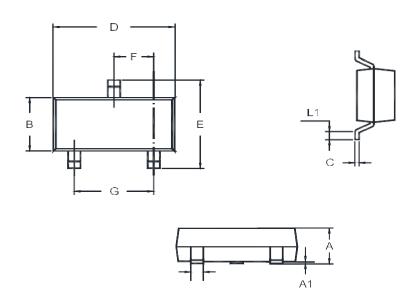



Fig. 6 Output Capacitance

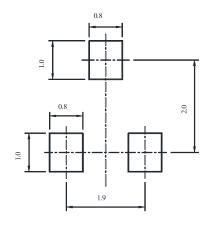


350 300 0 0 25 100 125 150 175 T_a, Ambient Temperature(℃)

Fig. 7 Power Derating Curve

Package Outline Dimensions (Unit: millimeters)

SOT-23



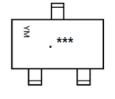
SYMBOL	MILLIMETER				
STIVIDOL	MIN	TYP	MAX		
Α	0.89	/	1.2		
A1	0.013	/	0.1		
В	1.2	/	1.4		
С	0.08	/	0.19		
D	2.8	/	3.04		
Е	2.2	/	2.6		
F	0.89	/	1.02		
G	1.78	/	2.04		
L	0.37	/	0.51		
L1	/	/	0.2		

ABC817 thru ABC818

GOOD-ARK Electronics

Recommended Soldering Footprint (Unit: millimeters)

Packing Information


Package	Tape Width	Pitch		Reel Size		Per Reel Packing	
SOT-23	mm	mm	inch	mm	inch	Quantity	
301-23	8	4±0.1	0.157±0.004	178	7	3000	

Marking information

Part No.	Marking Code
ABC817-16 & ABC818-16	6CR
ABC817-25 & ABC818-25	6CS
ABC817-40 & ABC818-40	6CT

[&]quot; *** " = See table of Marking information

Font type: Arial

Revision History

Version	Date	Major Changes
Rev.A	2025.01.19	Official Release

[&]quot; YM " = Date Code Marking

[&]quot;•" = Automotive-grade material

ABC817 thru ABC818

GOOD-ARK Electronics

Disclaimers

These materials are intended as a reference to assist our customers in the selection of the Suzhou Good-Ark product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Suzhou Good-Ark Electronics Co., Ltd.or a third party.

Suzhou Good-Ark Electronics Co., Ltd. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.

All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Suzhou Good-Ark Electronics Co., Ltd. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Suzhou Good-Ark Electronics Co., Ltd. or an authorized Suzhou Good-Ark Electronics Co., Ltd. for the latest product information before purchasing a product listed herein. The information described here may contain technical inaccuracies or typographical errors. Suzhou Good-Ark Electronics Co., Ltd. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Suzhou Good-Ark Electronics Co., Ltd. by various means, including our website home page.

(http://www.goodark.com)

When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Suzhou Good-Ark Electronics Co., Ltd. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.

The prior written approval of Suzhou Good-Ark Electronics Co., Ltd. is necessary to reprint or reproduce in whole or in part these materials.

Please contact Suzhou Good-Ark Electronics Co., Ltd. or an authorized distributor for further details on these materials or the products contained herein.